总数:40 | 当前第4/4 首页 上一页 1 2 3 4 下一页 尾页
信号检测与估值理论(13.2)
主讲:同济大学周志邦。 信号与系统 随机信号通过线性系统的分析是信号进行统计处理的基础。由于随机信号不能像确定 信号那样用明确的数学表达式来描述,只能用概率统计的方法进行描述,因此,研究随机信 号通过线性系统的输出,也只能从分析系统输出的统计特性入手。直接获取系统输出的概率 分布一般比较困难,但在许多实际应用中,如果知道了系统输出的一些统计特性(如均值、 相关函数、功率谱密度函数等)往往就能解决问题。本章首先介绍信号与系统的基本概念、 分类和特点;然后分别从连续系统、离散系统两方面分析随机信号通过线性时不变系统的统 计特性,重点介绍系统输出的一阶、二阶统计特性;在此基础上,介绍平稳随机序列的另一 种分析方法及随机序列参数模型的概念;介绍随机信号通过线性时变系统的一阶、二阶输出 统计特性;最后给出随机信号通过非线性系统的几种常用分析方法。 2.1 信号与系统概述 信号与系统概述 信号与系统概述 信号与系统概述 2.1.1 信号及其分类 信号及其分类 信号及其分类 信号及其分类 信号概念: 信号是信息的表现形式,通常反映为随若干变量而变化的某种物理量。 在数学上,信号一般可以表示成单个或多个自变量的函数。如:电信号、图像信号等。 自变量可以是时间、坐标位置等,为了表述方便,统称为时间,称随时间变化的函数为 时间信号。 信号分类:根据信号的函数特点及其频谱分布特性分。 1.根据信号变化规律是否预知分——确定信号与随机信号 能够用确定的数学表达式来描述变化规律的信号称为确定信号 确定信号 确定信号 确定信号,如正弦信号等,给定一 个时刻,就有一个确定的值与之对应。 不能用明确的数学表达式进行描述的称为随机信号 随机信号 随机信号 随机信号,如接收机内部的热噪声等,即使在 相同的条件下,每次观测到的信号(称为样本函数)也是不同的,因此是不可重现的,只能 通过概率统计的方法,分析多次观测得到的样本函数才能掌握它们的变化规律。
  1. 2010/9/28
  2. 人气(4171)
  3. 星级(10)
  4. 评论(0)
信号检测与估值理论(13.1)
主讲:同济大学周志邦。随机信号与系统 随机信号通过线性系统的分析是信号进行统计处理的基础。由于随机信号不能像确定 信号那样用明确的数学表达式来描述,只能用概率统计的方法进行描述,因此,研究随机信 号通过线性系统的输出,也只能从分析系统输出的统计特性入手。直接获取系统输出的概率 分布一般比较困难,但在许多实际应用中,如果知道了系统输出的一些统计特性(如均值、 相关函数、功率谱密度函数等)往往就能解决问题。本章首先介绍信号与系统的基本概念、 分类和特点;然后分别从连续系统、离散系统两方面分析随机信号通过线性时不变系统的统 计特性,重点介绍系统输出的一阶、二阶统计特性;在此基础上,介绍平稳随机序列的另一 种分析方法及随机序列参数模型的概念;介绍随机信号通过线性时变系统的一阶、二阶输出 统计特性;最后给出随机信号通过非线性系统的几种常用分析方法。 2.1 信号与系统概述 信号与系统概述 信号与系统概述 信号与系统概述 2.1.1 信号及其分类 信号及其分类 信号及其分类 信号及其分类 信号概念: 信号是信息的表现形式,通常反映为随若干变量而变化的某种物理量。 在数学上,信号一般可以表示成单个或多个自变量的函数。如:电信号、图像信号等。 自变量可以是时间、坐标位置等,为了表述方便,统称为时间,称随时间变化的函数为 时间信号。 信号分类:根据信号的函数特点及其频谱分布特性分。 1.根据信号变化规律是否预知分——确定信号与随机信号 能够用确定的数学表达式来描述变化规律的信号称为确定信号 确定信号 确定信号 确定信号,如正弦信号等,给定一 个时刻,就有一个确定的值与之对应。 不能用明确的数学表达式进行描述的称为随机信号 随机信号 随机信号 随机信号,如接收机内部的热噪声等,即使在 相同的条件下,每次观测到的信号(称为样本函数)也是不同的,因此是不可重现的,只能 通过概率统计的方法,分析多次观测得到的样本函数才能掌握它们的变化规律。
  1. 2010/9/25
  2. 人气(4505)
  3. 星级(10)
  4. 评论(0)
信号检测与估值理论(12.2)
主讲:同济大学周志邦。USTC−ISSP 第第第第2章章章章 随机随机随机随机信号与系统 信号与系统 信号与系统 信号与系统 随机信号通过线性系统的分析是信号进行统计处理的基础。由于随机信号不能像确定 信号那样用明确的数学表达式来描述,只能用概率统计的方法进行描述,因此,研究随机信 号通过线性系统的输出,也只能从分析系统输出的统计特性入手。直接获取系统输出的概率 分布一般比较困难,但在许多实际应用中,如果知道了系统输出的一些统计特性(如均值、 相关函数、功率谱密度函数等)往往就能解决问题。本章首先介绍信号与系统的基本概念、 分类和特点;然后分别从连续系统、离散系统两方面分析随机信号通过线性时不变系统的统 计特性,重点介绍系统输出的一阶、二阶统计特性;在此基础上,介绍平稳随机序列的另一 种分析方法及随机序列参数模型的概念;介绍随机信号通过线性时变系统的一阶、二阶输出 统计特性;最后给出随机信号通过非线性系统的几种常用分析方法。 2.1 信号与系统概述 信号与系统概述 信号与系统概述 信号与系统概述 2.1.1 信号及其分类 信号及其分类 信号及其分类 信号及其分类 信号概念: 信号是信息的表现形式,通常反映为随若干变量而变化的某种物理量。 在数学上,信号一般可以表示成单个或多个自变量的函数。如:电信号、图像信号等。 自变量可以是时间、坐标位置等,为了表述方便,统称为时间,称随时间变化的函数为 时间信号。 信号分类:根据信号的函数特点及其频谱分布特性分。 1.根据信号变化规律是否预知分——确定信号与随机信号 能够用确定的数学表达式来描述变化规律的信号称为确定信号 确定信号 确定信号 确定信号,如正弦信号等,给定一 个时刻,就有一个确定的值与之对应。 不能用明确的数学表达式进行描述的称为随机信号 随机信号 随机信号 随机信号,如接收机内部的热噪声等,即使在 相同的条件下,每次观测到的信号(称为样本函数)也是不同的,因此是不可重现的,只能 通过概率统计的方法,分析多次观测得到的样本函数才能掌握它们的变化规律。
  1. 2010/9/24
  2. 人气(4174)
  3. 星级(10)
  4. 评论(0)
信号检测与估值理论(12.1)
主讲:同济大学周志邦。USTC−ISSP 第第第第2章章章章 随机随机随机随机信号与系统 信号与系统 信号与系统 信号与系统 随机信号通过线性系统的分析是信号进行统计处理的基础。由于随机信号不能像确定 信号那样用明确的数学表达式来描述,只能用概率统计的方法进行描述,因此,研究随机信 号通过线性系统的输出,也只能从分析系统输出的统计特性入手。直接获取系统输出的概率 分布一般比较困难,但在许多实际应用中,如果知道了系统输出的一些统计特性(如均值、 相关函数、功率谱密度函数等)往往就能解决问题。本章首先介绍信号与系统的基本概念、 分类和特点;然后分别从连续系统、离散系统两方面分析随机信号通过线性时不变系统的统 计特性,重点介绍系统输出的一阶、二阶统计特性;在此基础上,介绍平稳随机序列的另一 种分析方法及随机序列参数模型的概念;介绍随机信号通过线性时变系统的一阶、二阶输出 统计特性;最后给出随机信号通过非线性系统的几种常用分析方法。 2.1 信号与系统概述 信号与系统概述 信号与系统概述 信号与系统概述 2.1.1 信号及其分类 信号及其分类 信号及其分类 信号及其分类 信号概念: 信号是信息的表现形式,通常反映为随若干变量而变化的某种物理量。 在数学上,信号一般可以表示成单个或多个自变量的函数。如:电信号、图像信号等。 自变量可以是时间、坐标位置等,为了表述方便,统称为时间,称随时间变化的函数为 时间信号。 信号分类:根据信号的函数特点及其频谱分布特性分。 1.根据信号变化规律是否预知分——确定信号与随机信号 能够用确定的数学表达式来描述变化规律的信号称为确定信号 确定信号 确定信号 确定信号,如正弦信号等,给定一 个时刻,就有一个确定的值与之对应。 不能用明确的数学表达式进行描述的称为随机信号 随机信号 随机信号 随机信号,如接收机内部的热噪声等,即使在 相同的条件下,每次观测到的信号(称为样本函数)也是不同的,因此是不可重现的,只能 通过概率统计的方法,分析多次观测得到的样本函数才能掌握它们的变化规律。
  1. 2010/9/14
  2. 人气(4002)
  3. 星级(10)
  4. 评论(0)
自动控制理论教程(3-4)
2.5 信号流程图与梅逊公式 2.6 状态空间模型简介 2.6.1 状态、状态变量及状态空间方程 2.6.2 线性定常控制系统的状态方程描述 2.6.3 线性定常系统状态空间表达式的结构图和信号流程图 2.6.4 传递函数与状态空间方程之间关系 2.7 数学模型的MATLAB描述 2.7.1 连续系统数学模型的MATLAB表示 2.7.2 离散系统数学模型的MATLAB表示 2.7.3 控制系统的建模 2.7.4 Simulink建模方法一一复杂系统的模型处理方法
  1. 2010/3/15
  2. 人气(6980)
  3. 星级(10)
  4. 评论(1)
自动控制理论教程(1-2)
第一章概论;第二章 控制系统的数学模型.第一章概论 1.1 控制理论发展综述 1.2 自动控制系统的结构 1.2.1 开环控制系统 1.2.2 闭环控制系统 1.3 反馈控制系统的组成和术语 1.4 自动控制系统分类 1.4.1 线性控制系统和非线性控制系统 1.4.2 恒值控制系统和随动系统 1.4.3 连续控制系统和离散控制系统 1.5 对控制系统的性能要求和本课程的任务 1.5.1 对控制系统性能的要求 第二章 控制系统的数学模型 2.1 拉普拉斯变换 2.1.1 拉普拉斯变换的定义和存在定理 2.1.2 几种典型函数的拉氏变换 2.1.3 拉普拉斯变换的性质 2.1.4 有理分式函数的拉普拉斯反变换 2.1.5 用拉普拉斯变换求解微分方程 2.2 系统输入一输出的传递函数描述 2.3 典型环节传递函数的数学模型 2.3.1 比例环节 2.3.2 一阶环节 2.3.3 积分和微分环节 2.3.4 二阶环节 2.3.5 时滞环节 2.4 用方块图表示的模型 2.5 信号流程图与梅逊公式 2.6 状态空间模型简介 2.6.1 状态、状态变量及状态空间方程 2.6.2 线性定常控制系统的状态方程描述 2.6.3 线性定常系统状态空间表达式的结构图和信号流程图 2.6.4 传递函数与状态空间方程之间关系 2.7 数学模型的MATLAB描述 2.7.1 连续系统数学模型的MATLAB表示 2.7.2 离散系统数学模型的MATLAB表示 2.7.3 控制系统的建模 2.7.4 Simulink建模方法一一复杂系统的模型处理方法 讲师介绍:颜文俊,男,长期从事控制理论、优化控制、离散事件系统和复杂系统等方面的理论及应用研究.现在为浙江大学电气学院教授,博士生导师,电气自动化研究所所长,浙江大学台州研究院常务副院长。
  1. 2010/3/12
  2. 人气(14715)
  3. 星级(10)
  4. 评论(17)
连续系统的结构图仿真程序_计算机仿真技术
计算机仿真技术吴旭光老师课堂视频.本课程是机械电子专业选修课。本课程的主要任务是系统地阐述控制系统分析和设计中的有关概念、原理和方法,涉及计算机原理、数值分析、自动控制理论以及控制系统设计等诸多方面的内容。培养学生掌握控制系统计算机仿真的方法、技术,培养学生初步的控制系统设计能力;
  1. 2009/10/21
  2. 人气(6222)
  3. 星级(10)
  4. 评论(0)
Z变换和反变换-吉大自动控制原理34讲(23)
Z变换和反变换!离散控制系统的线性差分方程。z变换在离散系统中的作用,与拉氏变换在连续系统中的作用非常相似。
  1. 2009/10/20
  2. 人气(12740)
  3. 星级(10)
  4. 评论(0)
脉冲传递函数-吉大自动控制原理34讲(24)
分析线性离散系统时,脉冲传递函数也是一个很重要的概念,线性离散系统的动态特性由脉冲传递函数来描述!传递函数:在线性连续系统中,当初始值为零时,系统输出信号的拉氏变换与输入信号的拉氏变换之比。 脉冲传递函数:在线性离散系统中,当初始值为零时,系统离散输出信号的Z变换与离散输入信号的Z变换之比.脉冲传递函数的公式 1)单位脉冲响应g(t):输入信号为单位脉冲信号(t)。g(t)是连续传递函数G(s)的拉氏反变换。2)当输入信号为延时的单位脉冲信号(t-nT)时,其输出信号为延时的单位脉冲响应g(t-nT)。 3)若输入信号为脉冲序列时,根据线性系统的叠加原理其输出信号为一系列脉冲响应之和。
  1. 2009/10/20
  2. 人气(7482)
  3. 星级(10)
  4. 评论(0)
连续系统时域券积积分分析法_信号与系统
连续系统时域券积积分分析法!主讲人:李辉!本课程是电子信息与电气类专业本科生的一门重要的专业基础课程。它主要讨论信号、线性非时变系统的分析方法,并通过实例分析,向学生介绍工程应用中的重要方法。通过这门课程的学习,提高学生的分析问题和解决问题的能力,为学生今后进一步学习信号处理、网络分析综合、通信理论、控制理论等课程打下良好的基础。 本课程需要较强的数学基础,其主要任务是运用相关数学方法进行信号与线性非时变系统分析。注重结合工程实际。
  1. 2009/9/21
  2. 人气(4441)
  3. 星级(10)
  4. 评论(0)
总数:40 | 当前第4/4 首页 上一页 1 2 3 4 下一页 尾页