技术视频: 通过 Windows CE 建立实时系统!Windows Embedded 的 Kurt Kennett 主讲的技术视频,长约一小时,概述 Windows Embedded CE 中的硬实时功能和注意事项。 Windows Embedded 可以通过单一平台、一个开发环境和无处不在的实时功能,为工业自动化提供可靠、灵活、连接性好且有成本效益的基础。 在工厂中使用基于符合各项标准的 Windows 有助于增强可靠性和持久性,而且易于与制造商的企业 IT 系统集成并能降低操作成本。
工业自动化和制造业正向着在工厂中使用“更智能”的硬件的趋势发展,作为工业设备和系统的基础,32 位和 64 位处理器的预计增长率为 11.85%。 Windows Embedded 操作系统可以最充分地利用您日渐增加的硬件投入。
四种灵活的产品(均基于 Windows 平台并通过熟悉的 .NET 工具进行开发)使 Windows Embedded 成为适用于工业自动化(从传感器到服务器)的高效操作系统。
远景视频: Microsoft 与制造业 !Windows Embedded 可以通过单一平台、一个开发环境和无处不在的实时功能,为工业自动化提供可靠、灵活、连接性好且有成本效益的基础。 在工厂中使用基于符合各项标准的 Windows 有助于增强可靠性和持久性,而且易于与制造商的企业 IT 系统集成并能降低操作成本。
工业自动化和制造业正向着在工厂中使用“更智能”的硬件的趋势发展,作为工业设备和系统的基础,32 位和 64 位处理器的预计增长率为 11.85%。 Windows Embedded 操作系统可以最充分地利用您日渐增加的硬件投入。
四种灵活的产品(均基于 Windows 平台并通过熟悉的 .NET 工具进行开发)使 Windows Embedded 成为适用于工业自动化(从传感器到服务器)的高效操作系统。
放飞风筝需要娴熟的技能,Festo公司凭借其“空中自动化风筝”首次证实运用机电学原理可以实现风筝全程自动化控制。这是其在运用流动气流核心技术上的新发展。
“空中自动风筝”包含两个分别用机电控制器操纵的双线风筝。运用伺服电机和人造风,这两个风筝就可以实现室内自动化操作。各风筝线通过快速开关阀连接到Festo公司生产的DMSP射流臂,它可以缩短风筝线的长度。如果风筝断线,通过射流臂收缩风筝线就可以使其平稳飞行。It takes a fair amount of skill to fly a kite. With its Sky_liner project, Festo has become the first company to demonstrate that fully automated control can be achieved with the aid of mechatronics, thus linking a new development to its core competency of automation using moving air.
Sky_liner consists of two two-line kites, each of which is controlled using a mechatronic control unit. The two kites are operated automatically indoors, using servo motors and artificial wind. Each line is connected via fast-switching valves to a fluidic muscle DMSP from Festo, which shortens the line and counterbalances the kite by contracting when the kite breaks away.
It takes a fair amount of skill to fly a kite. With its Sky_liner project, Festo has become the first company to demonstrate that fully automated control can be achieved with the aid of mechatronics, thus linking a new development to its core competency of automation using moving air.
Sky_liner consists of two two-line kites, each of which is controlled using a mechatronic control unit. The two kites are operated automatically indoors, using servo motors and artificial wind. Each line is connected via fast-switching valves to a fluidic muscle DMSP from Festo, which shortens the line and counterbalances the kite by contracting when the kite breaks away.
“气动机器人手臂”的灵感来源于自然界。结合机电一体化和人类仿生学模型,机器人手臂彰显了未来自动运动序列新的可行性。
“气动机器人手臂”由机器骨骼和机器肌肉组成。30块肌肉连接带动骨骼移动,包括尺骨、桡骨、掌骨和指骨以及肩关节和肩胛。这种连接技术目前还没有发明出来。
机器肌肉是Festo公司的一个产品,已经广泛应用于工业应用,叫做流体肌肉。这种技术使用了Festo公司的微型创新压力比例阀,让我们能够精确控制设计的力量和硬度。这些执行器与机电一体化系统和软件的技术水平同步。
扩展“气动机器人”的传感器系统也非常合理,就像开发后背、臀部和脖子部位一样,比如安装摄像头或者有感知能力的零件。这些扩展让机器人能够在更加危险的情况下工作发挥了重要作用。
Airics_arm is inspired by nature. Combining mechatronics and the model of human biology, the robotic arm shows new possibilities in automated motion sequences of the future.
Airics_arm is equipped with artificial bones and muscles. 30 muscles move the bone structure comprising the ulna and radius, the metacarpal bones and the bones of the fingers as well as the shoulder joint and the shoulder blade; joints that are not found in the world of technology.
The muscles are a product of Festo and are already widely used in industrial practice under the name of Fluidic Muscle. This technology, combined with very small and highly innovative piezo proportional valves from Festo, enable us to accurately control the designs forces and rigidity. These actuators are coordinated by state-of-the-art mechatronic systems and software.
Extending the system of sensors of Airics_arm, e.g. with cameras or elements for tactile perception, is just as plausible as the development of a design for a back, hip and neck. These extensions will also play an important role in robotics as even more dangerous and hazardous situations in technology could be assigned to them.
以自然界的鳐鱼为模板的“空中鳐鱼”是一种由远程遥控的氦气气囊和羽翼振动产生驱动力组成的混合体。它轻便的设计借助氦气的浮力让它可以在广阔的空中“遨游”,这种方法与水中的鳐鱼相似。
“空中鳐鱼”的驱动力由羽翼振动产生。利用射线效应并基于与四周有连接的拱侧翼交替推拉运动的原理,私伺服控制的羽翼可以上下移动。当一侧受到压力时,它几何形的结构会自动向受力的反方向卷曲。一个伺服驱动两片侧翼交替地纵向移动,驱使羽翼上下运动。Air_ray, modelled on the manta ray, is a remote-controlled hybrid construction consisting of a helium-filled ballonet and a beating wing drive. Its lightweight design enables it to “swim” in the sea of air using the lift from the helium in a similar way to the manta ray in water.
Propulsion is achieved by a beating wing drive. The servo drive-controlled wing, which can move up and down, utilises the Fin Ray Effect and is based on alternate pulling and pushing flanks connected via frames. When pressure is exerted on one edge, the geometrical structure automatically curves against the direction of the influencing force. A servo drive pulls the two flanks alternately in longitudinal direction, thus moving the wing up and down.