总数:631 | 当前第51/64 首页 上一页 ... 46 47 48 49 50 51 52 53 54 55 ... 下一页 尾页
模拟电子技术基础(6-7)
三极管放大电路的组成原理一、放大电路的组成与各元件的作用 Rb和Rc:提供适合偏置--发射结正偏,集电结反偏。C1、C2是隔直(耦合)电容,隔直流通交流。射放大电路 Vs ,Rs:信号源电压与内阻; RL:负载电阻,将集电极电流的变化△ic转换为集电极与发射极间的电压变化△VCE 二、放大电路的基本工作原理 静态(Vi=0,假设工作在放大状态) 分析,又称直流分析,计算三极管的电流和极间电压值,应采用直流通路(电容开路)。 基极电流:IB=IBQ=(VCC-VBEQ)/Rb 集电极电流:IC=ICQ=βIBQ 集-射间电压:VCE=VCEQ=VCC-ICQRc 动态(vi≠0)分析: 模拟电子技术基础!主讲:王小海。
  1. 2010/11/24
  2. 人气(7811)
  3. 星级(10)
  4. 评论(0)
模拟电子技术基础(4-5)
场效应管及其电路分析 场效应管拾电场控制器件。 本章介绍场效应晶体管的结构、特性和参数,以及场效应管放大电路。 要求学生了解场效应管的结构,导电机理,它的外特性。熟练掌握放大电路的组成原理,能够独立的进行电路分析。 场效应管FET(Field Effect Transistor):具有输入电阻高、热稳定性好、工艺简单、易于集成等优点。 场效应管分类: 1.绝缘栅型IGFET (Insulted Gate Type)或MOS(Metal-Oxide-Semiconductor) 2.增强型MOS (Enhancement) 3.耗尽型MOS (Depletion) 4.结型JFET (Junction Type) 每一种又可分为N沟道和P沟道管子。 三种基本组态:共源(CS)、共漏(CD)和共栅(CG) 场效应管组成放大电路的原则和方法与晶体管相同:为使场效应管正常工作,各电极间必须加上合适的偏置电压;为了实现不失真放大,也同样需要设置合适且稳定的静态工作点。场效应管是一种电压控制器件,所以它的偏置电路有其自身的特点。不同FET类型对偏置电压的要求:FET偏置电路类型:1.固定偏置电路;2.自偏压偏置电路;3.分压式自偏压电路 模拟电子技术基础!主讲:王小海。
  1. 2010/11/20
  2. 人气(9420)
  3. 星级(10)
  4. 评论(1)
模拟电子技术基础(2-3)
半导体三极管及其电路分析 本章介绍半导体三极管的结构、特性和参数,以及半导体放大电路的组成原理,三极管电压传输特性和静态工作点。 要求学生了解晶体三极管的结构,导电机理,它的外特性。熟练掌握放大电路的组成原理,能够独立的进行电路分析。 半导体三极管又称为晶体管、三极管、双极型晶体管、BJT 。它由2个背靠背的PN结组成,分为 NPN型、PNP型。由制造的材料又分为硅三极管、锗三极管。 NPN型三极管:c:collector 集电极;b:base 基极;e:emitter 发射极!工艺特点:三个区,二个结,引出三根电极杂质浓度(e区掺杂浓度最高,b区较高,c 区最低);面积大小( c区最大, e区大, b区窄)。 PNP型三极管:在P+型底层上形成两个PN结。 模拟电子技术基础!主讲:王小海。
  1. 2010/11/19
  2. 人气(10527)
  3. 星级(10)
  4. 评论(1)
8051单片机实践与应用
MCS-51单片机实践与应用!本书精选了8051单片机的汇编语言以及开发过程中应注意到的问题。通过在每一个8051功能模块介绍中辅以应用实例,介绍了单片机基本模块的应用、串行通信的应用、音乐的应用、显示器和键盘控制、电子号码锁的应用、A/D的模数转换的应用、点阵显示器的应用、外围接口IC的应用、步进马达的控制电路、8279年应用、实时时钟芯片的应用,打印机的应用、A/D转换器ICL7135应用、绘图型LCD的应用。本书中每一个实例都有完整的程序、详细的注解和完整的电路图。 第一章MCS-51的结构 第二章MCS-51的指令集及指令说明 第三章8051软硬件开发系统 第四章基础练习 第五章串行通信 第六章音乐的应用 第七章显示器与键盘控制 第八章电子号码的应用 第九章模拟/数字转换器 第十章点矩阵显示器的应用
  1. 2010/11/16
  2. 人气(4702)
  3. 星级(10)
  4. 评论(0)
电路原理(19-20)
功率因数提高:◎改善电能质量 负荷(P+JQ)电压损失ΔU简化计算如下: ΔU=(PR+QX)/U (1) 式中 U-线路额定电压,kV P-输送的有功功率,kW Q-输送的无功功率,kvar R-线路电阻,Ω X-线路电抗,Ω 安装补偿设备容量Qc后,线路电压降为ΔU1,计算如下: ΔU1=[PR+(Q-Qc)X]/U (2) 很明显,ΔU1<ΔU,即安装补偿电容后电压损失减小了。由式(1)、(2)可得出接入无功补偿容量Qc后电压升高计算如下: ΔU-ΔU1=QcX/U (3) 由于越靠近线路末端,线路的电抗X越大,因此从(3)式可以看出,越靠近线路末端装设无功补偿装置效果越好。 ◎降低电能损耗 安装无功补偿主要是为了降损节能,如输送的有功P为定值,加装无功补偿设备后功率因数由cosφ提高到cosφ1,因为P=UIcosφ,负荷电流I与cosφ成反比,又由于P=I2R,线路的有功损失与电流I的平方成正比。当cosφ升高,负荷电流I降低,即电流I降低,线路有功损耗就成倍降低。反之当负荷的功率因数从1降低到cosφ时,电网元件中功率损耗将增加的百分数为ΔPL%,计算如下: ΔPL%=(1/cos2φ-1)•100%
  1. 2010/9/27
  2. 人气(5081)
  3. 星级(10)
  4. 评论(0)
电路原理(17-18)
基尔霍夫定律Kirchoffs law :定义:在给定温度下,对于给定波长,所有物体的比辐射率与吸收率的比值相同,且等于该温度和波长下理想黑体的比辐射率。 基尔霍夫定律是德国物理学家基尔霍夫提出的。基尔霍夫定律是电路理论中最基本也是最重要的定律之一。它概括了电路中电流和电压分别遵循的基本规律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。基尔霍夫定律Kirchhoff laws是电路中电压和电流所遵循的基本规律,是分析和计算较为复杂电路的基础,1845年由德国物理学家G.R.基尔霍夫(Gustav Robert Kirchhoff,1824~1887)提出。它既可以用于直流电路的分析,也可以用于交流电路的分析,还可以用于含有电子元件的非线性电路的分析。运用基尔霍夫定律进行电路分析时,仅与电路的连接方式有关,而与构成该电路的元器件具有什么样的性质无关。基尔霍夫定律包括电流定律和电压定律。
  1. 2010/9/24
  2. 人气(4817)
  3. 星级(10)
  4. 评论(1)
电路原理(16)
交流电路中的电感元件。交流电路所讨论的基本问题和直流电路一样,仍然是电路中同一元件上电压和电流的关系,以及电压、电流和功率在电路中的分配。但交流电路比直流电路复杂,这主要表现在两个方面: 1、在直流电路中,只有电阻一个元件,而在交流电路中有电阻、电感和电容三种元件,三种元件又有明显的差别。这三种器件在交流电路中扮演了三个基本角色,互相制约又互相配合,组成了多种多样的交流电路。 2、在直流电路中,反映一个电阻元件两端电压U 和其中电流I 量值大小关系的是两者之比U /I ,即该元件的电阻值R 。在交流电路中反映某一元件两端电压u(t)和其中电流i(t) 量值关系,则需要有两个量,一是两者峰值之比,叫做该元件的阻抗,用Z 表示:Z = U / I ,另一是二者位相之差:φ=φu-φi 。
  1. 2010/9/13
  2. 人气(4817)
  3. 星级(10)
  4. 评论(0)
电路原理(15)
正弦交流电路计算。功率因数的意义 1、使电源设备得到充分利用 2、降低线路损耗和线路压降 二、提高功率因数的方法 1、提高用电设备本身的功率因数 2、在感性负载两端并联适当的电容 3、国家对功率因数的规定 掌握R、L、C元件伏安关系的相量形式,能正确画出相量图、相量模型,掌握三种元件的功率
  1. 2010/9/1
  2. 人气(5294)
  3. 星级(10)
  4. 评论(0)
电路原理(14)
正弦交流电:大小和方向随时间作有规律变化的电压和电流称为交流电,又称交变电流.正弦交流电是随时间按照正弦函数规律变化的电压和电流.由于交流电的大小和方向都是随时间不断变化的,也就是说,每一瞬间电压(电动势)和电流的数值都不相同,所以在分析和计算交流电路时,必须标明它的正方向.正弦交流电的三要素:   (1)最大值;   (2)角频率;   (3)初相位(初相)   交流电在实际使用中,如果用最大值来计算交流电的电功或电功率并不合适,因为毕竟在一个周期中只有两个瞬间达到这个最大值。为此人们通常用有效值来计算交流电的实际效应。    理论和实验都证明,正弦交流电的有效值等于最大值的根号2分之1(就是有效值是最大值的0.707倍).
  1. 2010/8/25
  2. 人气(5506)
  3. 星级(10)
  4. 评论(0)
芯源电子单片机教程
芯源电子单片机教程!328 MCS-51单片机原理及实用技术 329 位微型计算机原理·接口技术及其应用 330 单片机开发与典型应用设计 331 单片机实用系统设计技术 332 IBM PC微型计算机原理及接口技术 333 MCS-51单片机原理及接口技术 修订版 334 北京职业教育计算机应用培训教材 单片机——原理·操作·实验·应用 335 单片机实用技术_整机设计、多机通信、实用技术 336 EM78系列单片机简介 337 单片机器件应用手册 338 MCS 96 MC68单片机原理与应用 339 数字PID及其算法 699 MCS-51单片机开发系统与监控分析 700 MCS-51单片机原理及接口技术 701 MCS-51系列单片机实用接口技术 702 PC机及单片机数据通信技术 703 PIC系列单片机应用设计与实例 704 单片机外围器件实用手册 电源器件分册 705 单片机基础 706 单片机模糊控制系统设计与应用实例 707 单片机器件应用手册 708 单片机实用开发指南 709 单片机应用技术大全 710 单片机应用系统抗干扰技术 711 单片机应用技术选编 712 单片机原理及系统设计 713 单片机原理与应用教程 714 数字信号处理C语言程序集 715 单片机接口技术实验指导 716 信号处理单片机及应用(上) 717 信号处理单片机及应用(下) 718 智能仪器(单片机应用系统设计) 719 自装单片微电脑快速入门 720 8051单片机实践与应用 741 边学边用C语言
  1. 2010/8/25
  2. 人气(7055)
  3. 星级(6)
  4. 评论(0)
总数:631 | 当前第51/64 首页 上一页 ... 46 47 48 49 50 51 52 53 54 55 ... 下一页 尾页