“气动机器人手臂”的灵感来源于自然界。结合机电一体化和人类仿生学模型,机器人手臂彰显了未来自动运动序列新的可行性。
“气动机器人手臂”由机器骨骼和机器肌肉组成。30块肌肉连接带动骨骼移动,包括尺骨、桡骨、掌骨和指骨以及肩关节和肩胛。这种连接技术目前还没有发明出来。
机器肌肉是Festo公司的一个产品,已经广泛应用于工业应用,叫做流体肌肉。这种技术使用了Festo公司的微型创新压力比例阀,让我们能够精确控制设计的力量和硬度。这些执行器与机电一体化系统和软件的技术水平同步。
扩展“气动机器人”的传感器系统也非常合理,就像开发后背、臀部和脖子部位一样,比如安装摄像头或者有感知能力的零件。这些扩展让机器人能够在更加危险的情况下工作发挥了重要作用。
Airics_arm is inspired by nature. Combining mechatronics and the model of human biology, the robotic arm shows new possibilities in automated motion sequences of the future.
Airics_arm is equipped with artificial bones and muscles. 30 muscles move the bone structure comprising the ulna and radius, the metacarpal bones and the bones of the fingers as well as the shoulder joint and the shoulder blade; joints that are not found in the world of technology.
The muscles are a product of Festo and are already widely used in industrial practice under the name of Fluidic Muscle. This technology, combined with very small and highly innovative piezo proportional valves from Festo, enable us to accurately control the designs forces and rigidity. These actuators are coordinated by state-of-the-art mechatronic systems and software.
Extending the system of sensors of Airics_arm, e.g. with cameras or elements for tactile perception, is just as plausible as the development of a design for a back, hip and neck. These extensions will also play an important role in robotics as even more dangerous and hazardous situations in technology could be assigned to them.
停电预防_ABB输配电解决方案!世界上的停电事件使人们对电力传输系统可靠性产生了担心。作为世界电力技术的领导者,ABB 提供预防停电的可持续解决方案。ABB为其用户提供所有工业用最为齐备的输配电产品 ... 作为世界电力技术的领导者,ABB 提供预防停电的可持续解决方案。Power outages around the world have fed concerns about the reliability of power transmission systems. As the world leader in power technologies, ABB offers sustainable solutions to preventing a blackout. This portal provides easy access to information about ABBs power products and its expertise in blackout prevention, grid reliability, power transmission systems as well as other power products and services offered.
airPenguin –空中企鹅——自动飞翔的机器企鹅.
随着空中企鹅的问世, Festo公司的工程师们创造了人造企鹅,并教会他们“在空中自主飞行”。为此,控制和调节技术进一步发展成自我调节生物机电一体化系统,该系统可以在今后的生产适应性发挥作用。
一组3只自动飞行的企鹅自由盘旋在空中超声发射站监控下的固定区域。企鹅能够自由的在这个空间内移动,因为一个微控制器赋予了他们自由的意志来以开拓这片空间。
autonomously flying robotic penguins
With the AirPenguins, the engineers from Festo have created artificial penguins and have taught them "autonomous flight in the sea of air". For this purpose, control and regulating technology had to be further developed into self-regulating biomechatronic systems, which could also play a future role in adaptive production.
A group of three autonomously flying penguins hovers freely through a defined air space that is monitored by ultrasound transmission stations. The penguins are at liberty to move within this space; a microcontroller gives them free will in order to explore it.