放飞风筝需要娴熟的技能,Festo公司凭借其“空中自动化风筝”首次证实运用机电学原理可以实现风筝全程自动化控制。这是其在运用流动气流核心技术上的新发展。
“空中自动风筝”包含两个分别用机电控制器操纵的双线风筝。运用伺服电机和人造风,这两个风筝就可以实现室内自动化操作。各风筝线通过快速开关阀连接到Festo公司生产的DMSP射流臂,它可以缩短风筝线的长度。如果风筝断线,通过射流臂收缩风筝线就可以使其平稳飞行。It takes a fair amount of skill to fly a kite. With its Sky_liner project, Festo has become the first company to demonstrate that fully automated control can be achieved with the aid of mechatronics, thus linking a new development to its core competency of automation using moving air.
Sky_liner consists of two two-line kites, each of which is controlled using a mechatronic control unit. The two kites are operated automatically indoors, using servo motors and artificial wind. Each line is connected via fast-switching valves to a fluidic muscle DMSP from Festo, which shortens the line and counterbalances the kite by contracting when the kite breaks away.
It takes a fair amount of skill to fly a kite. With its Sky_liner project, Festo has become the first company to demonstrate that fully automated control can be achieved with the aid of mechatronics, thus linking a new development to its core competency of automation using moving air.
Sky_liner consists of two two-line kites, each of which is controlled using a mechatronic control unit. The two kites are operated automatically indoors, using servo motors and artificial wind. Each line is connected via fast-switching valves to a fluidic muscle DMSP from Festo, which shortens the line and counterbalances the kite by contracting when the kite breaks away.
“气动机器人手臂”的灵感来源于自然界。结合机电一体化和人类仿生学模型,机器人手臂彰显了未来自动运动序列新的可行性。
“气动机器人手臂”由机器骨骼和机器肌肉组成。30块肌肉连接带动骨骼移动,包括尺骨、桡骨、掌骨和指骨以及肩关节和肩胛。这种连接技术目前还没有发明出来。
机器肌肉是Festo公司的一个产品,已经广泛应用于工业应用,叫做流体肌肉。这种技术使用了Festo公司的微型创新压力比例阀,让我们能够精确控制设计的力量和硬度。这些执行器与机电一体化系统和软件的技术水平同步。
扩展“气动机器人”的传感器系统也非常合理,就像开发后背、臀部和脖子部位一样,比如安装摄像头或者有感知能力的零件。这些扩展让机器人能够在更加危险的情况下工作发挥了重要作用。
Airics_arm is inspired by nature. Combining mechatronics and the model of human biology, the robotic arm shows new possibilities in automated motion sequences of the future.
Airics_arm is equipped with artificial bones and muscles. 30 muscles move the bone structure comprising the ulna and radius, the metacarpal bones and the bones of the fingers as well as the shoulder joint and the shoulder blade; joints that are not found in the world of technology.
The muscles are a product of Festo and are already widely used in industrial practice under the name of Fluidic Muscle. This technology, combined with very small and highly innovative piezo proportional valves from Festo, enable us to accurately control the designs forces and rigidity. These actuators are coordinated by state-of-the-art mechatronic systems and software.
Extending the system of sensors of Airics_arm, e.g. with cameras or elements for tactile perception, is just as plausible as the development of a design for a back, hip and neck. These extensions will also play an important role in robotics as even more dangerous and hazardous situations in technology could be assigned to them.
玩溜溜球需要技巧和耐心。通过YoYo系统,Festo证明了在机电元件的帮助下,加上Festo利用流动空气的核心自动化竞争力,能实现全自动控制。 YoYo由3个独立的溜溜球组成,其规格也各不相同,分别为16, 20 和24。所有溜溜球均采取不同种类的麦克斯韦转轮,每一个均由气动肌腱驱动。 Playing with a yo-yo takes skill and patience. With its YoYo, Festo has demonstrated that fully automated control can be achieved with the aid of mechatronics, thus linking with Festo core competency of automation to using moving air.
The YoYo consists of three independent yo-yos of different sizes, 16, 20 and 24. All the yo-yos take the form of Maxwell wheels of various kinds, with each one being driven by a pneumatic muscle.
airPenguin –空中企鹅——自动飞翔的机器企鹅.
随着空中企鹅的问世, Festo公司的工程师们创造了人造企鹅,并教会他们“在空中自主飞行”。为此,控制和调节技术进一步发展成自我调节生物机电一体化系统,该系统可以在今后的生产适应性发挥作用。
一组3只自动飞行的企鹅自由盘旋在空中超声发射站监控下的固定区域。企鹅能够自由的在这个空间内移动,因为一个微控制器赋予了他们自由的意志来以开拓这片空间。
autonomously flying robotic penguins
With the AirPenguins, the engineers from Festo have created artificial penguins and have taught them "autonomous flight in the sea of air". For this purpose, control and regulating technology had to be further developed into self-regulating biomechatronic systems, which could also play a future role in adaptive production.
A group of three autonomously flying penguins hovers freely through a defined air space that is monitored by ultrasound transmission stations. The penguins are at liberty to move within this space; a microcontroller gives them free will in order to explore it.