总数:34 | 当前第1/4 首页 上一页 1 2 3 4 下一页 尾页
总复习2-吉大自动控制原理34讲(34)
自动控制原理总复习2-吉大自动控制原理34讲(34)!
  1. 2009/11/15
  2. 人气(8970)
  3. 星级(10)
  4. 评论(4)
总复习1-吉大自动控制原理34讲(33)
自动控制原理总复习1-吉大自动控制原理34讲(33)!
  1. 2009/11/13
  2. 人气(7461)
  3. 星级(10)
  4. 评论(2)
广义根轨迹-吉大自动控制原理34讲(31)
广义根轨迹 以K*变化绘制的根轨迹通常被称为常规根轨迹,而广义根轨迹是其它情形下的根轨迹.如参数根轨迹,零度根轨迹.
  1. 2009/11/11
  2. 人气(6642)
  3. 星级(10)
  4. 评论(2)
绘制根轨迹的规则3-吉大自动控制原理34讲(30)
绘制根轨迹的规则:规则一 根轨迹的起点和终点!规则二 根轨迹的分支数、连续性和对称性!规则三 实轴上的根轨迹!规则四 渐近线!规则五 根轨迹的分离点 !规则六 起始角与终止角 !规则七 根轨迹与虚轴的交点
  1. 2009/11/10
  2. 人气(7082)
  3. 星级(10)
  4. 评论(0)
绘制根轨迹的规则2-吉大自动控制原理34讲(29)
绘制根轨迹的依据 根轨迹的基本任务在于,由已知的开环零、极点的分布及根轨迹增益,通过图解的方法找出闭环极点。Kr由0变到无穷大时,闭环系统特征方程的根在S平面上运动的轨迹。因此,系统的特征方程便是绘制根轨迹的依据。 1. 绘制根轨迹的相角条件与系统开环根轨迹增益值Kr大小无关。即在S平面上,所有满足相角条件的点的集合构成系统的根轨迹图。即相角条件是绘制根轨迹的主要依据。 2. 绘制根轨迹的幅值条件与系统环根轨迹增益值Kr大小有关。即Kr值的变化会改变系统的闭环极点在S平面的位置。 3. 在系统参数确定的情况下,凡能满足相角条件和幅值条件的S值,就是对应给定参数的特征根或系统的闭环极点。 4. 由于相角条件和幅值条件只与系统的开环传递函数有关,因此,已知系统的开环传递函数便可绘制出根轨迹图。 二. 绘制根轨迹的规则 1. 当开环零点数(m)大于开环极点数(n)时,除有n条根轨迹起始于开环极点(称为有限极点)外,还有m—n 条根轨迹起始于无穷远点(称为无限极点)。这种情况在实际物理系统中虽然不会出现,但在参数根轨迹中,有可能出现在等效开环传递函数中。 2. 根轨迹在实轴上的分离点和会合点 若根轨迹位于实轴上两个相邻的开环极点之间(其中一个可以是无限极点),则在这两个极点之间至少有一个分离点。但在有些情况下,根轨迹的分离点也可能以共轭形式出现在复平面上。显然,复平面上的分离点表明系统特征方程的根中至少有两对相等的共轭复根存在。
  1. 2009/11/10
  2. 人气(8902)
  3. 星级(9)
  4. 评论(1)
绘制根轨迹的规则-吉大自动控制原理34讲(28)
绘制根轨迹的依据 根轨迹的基本任务在于,由已知的开环零、极点的分布及根轨迹增益,通过图解的方法找出闭环极点。Kr由0变到无穷大时,闭环系统特征方程的根在S平面上运动的轨迹。因此,系统的特征方程便是绘制根轨迹的依据。 1. 绘制根轨迹的相角条件与系统开环根轨迹增益值Kr大小无关。即在S平面上,所有满足相角条件的点的集合构成系统的根轨迹图。即相角条件是绘制根轨迹的主要依据。 2. 绘制根轨迹的幅值条件与系统环根轨迹增益值Kr大小有关。即Kr值的变化会改变系统的闭环极点在S平面的位置。 3. 在系统参数确定的情况下,凡能满足相角条件和幅值条件的S值,就是对应给定参数的特征根或系统的闭环极点。 4. 由于相角条件和幅值条件只与系统的开环传递函数有关,因此,已知系统的开环传递函数便可绘制出根轨迹图。 二. 绘制根轨迹的规则 1. 当开环零点数(m)大于开环极点数(n)时,除有n条根轨迹起始于开环极点(称为有限极点)外,还有m—n 条根轨迹起始于无穷远点(称为无限极点)。这种情况在实际物理系统中虽然不会出现,但在参数根轨迹中,有可能出现在等效开环传递函数中。 2. 根轨迹在实轴上的分离点和会合点 若根轨迹位于实轴上两个相邻的开环极点之间(其中一个可以是无限极点),则在这两个极点之间至少有一个分离点。但在有些情况下,根轨迹的分离点也可能以共轭形式出现在复平面上。显然,复平面上的分离点表明系统特征方程的根中至少有两对相等的共轭复根存在。
  1. 2009/11/9
  2. 人气(10334)
  3. 星级(10)
  4. 评论(0)
根轨迹法-吉大自动控制原理34讲(27)
1948年,W.R.Evans提出了一种求特征根的简单方法,并且在控制系统的分析与设计中得到广泛的应用。这一方法不直接求解特征方程,用作图的方法表示特征方程的根与系统某一参数的全部数值关系,当这一参数取特定值时,对应的特征根可在上述关系图中找到。这种方法叫根轨迹法。根轨迹法具有直观的特点,利用系统的根轨迹可以分析结构和参数已知的闭环系统的稳定性和瞬态响应特性,还可分析参数变化对系统性能的影响。在设计线性控制系统时,可以根据对系统性能指标的要求确定可调整参数以及系统开环零极点的位置,即根轨迹法可以用于系统的分析与综合。
  1. 2009/11/9
  2. 人气(11512)
  3. 星级(10)
  4. 评论(1)
Matlab在离散系统中的应用-吉大自动控制原理34讲(26)
MATLAB作为一套高性能的数值计算和可视化数学软件,已经广泛地应用于自动控制、数值和符号计算、工程与科学绘图、数字图像处理、数字信号处理、通信系统设计与仿真以及财务与金融工程等各个领域。
  1. 2009/11/7
  2. 人气(9161)
  3. 星级(6)
  4. 评论(1)
非最小相位系统的根轨迹-吉大自动控制原理34讲(32)
非最小相位系统的定义 : 非最小相位系统——是指在S平面右半部有开环极点或开环零点的控制系统。 最小相位系统—— 所有开环零点和极点都位于S平面左半部的系统。 非最小相位系统一词源于对系统频率特性的描述,即在正弦信号的作用下,具有相同幅频特性的系统(或环节),最小相位系统的相位移最小,而非最小相位系统的相位移大于最小相位系统的相位移。 非最小相位系统根轨迹的绘制方法同最小相位系统完全相同。
  1. 2009/11/6
  2. 人气(8263)
  3. 星级(10)
  4. 评论(2)
离散控制系统分析-吉大自动控制原理34讲(25)
线性离散控制系统的稳定性分析:线性离散控制系统稳定的充分必要条件是:线性离散闭环控制系统特征方程根的模小于1,则线性离散控制系统是稳定的。 离散控制系统的瞬态响应 :闭环零极点与瞬态响应的关系,闭环极点对系统瞬态响应的影响.离散控制系统的稳态误差!
  1. 2009/10/21
  2. 人气(7613)
  3. 星级(10)
  4. 评论(0)
总数:34 | 当前第1/4 首页 上一页 1 2 3 4 下一页 尾页